Skip to content

PaddleDetection

PaddleDetection 是百度基于其深度学习框架 PaddlePaddle 开发的一个端到端的目标检测开发工具包。它支持对象检测、实例分割、多对象跟踪和实时多人关键点检测,旨在帮助开发者更高效地进行目标检测模型的开发和训练。

PaddleDetection

你可以使用PaddleDetection快速进行目标检测模型训练,同时使用SwanLab进行实验跟踪与可视化。

1. 引入SwanLabCallback

首先在你clone的PaddleDetection项目中,找到ppdet/engine/callbacks.py文件,在代码的底部添加如下代码:

python
class SwanLabCallback(Callback):
    def __init__(self, model):
        super(SwanLabCallback, self).__init__(model)

        try:
            import swanlab
            self.swanlab = swanlab
        except Exception as e:
            logger.error('swanlab not found, please install swanlab. '
                         'Use: `pip install swanlab`.')
            raise e

        self.swanlab_params = {k[8:]: v for k, v in model.cfg.items() if k.startswith("swanlab_")}

        self._run = None
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
            _ = self.run
            self.run.config.update(self.model.cfg)

        self.best_ap = -1000.
        self.fps = []

    @property
    def run(self):
        if self._run is None:
            self._run = self.swanlab.get_run() or self.swanlab.init(**self.swanlab_params)
        return self._run

    def on_step_end(self, status):
        if dist.get_world_size() < 2 or dist.get_rank() == 0 and status['mode'] == 'train':
            training_status = status['training_staus'].get()
            batch_time = status['batch_time']
            data_time = status['data_time']
            batch_size = self.model.cfg['{}Reader'.format(status['mode'].capitalize())]['batch_size']

            ips = float(batch_size) / float(batch_time.avg)
            metrics = {
                "train/" + k: float(v) for k, v in training_status.items()
            }
            metrics.update({
                "train/ips": ips,
                "train/data_cost": float(data_time.avg),
                "train/batch_cost": float(batch_time.avg)
            })

            self.fps.append(ips)
            self.run.log(metrics)

    def on_epoch_end(self, status):
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
            mode = status['mode']
            epoch_id = status['epoch_id']
            
            if mode == 'train':
                fps = sum(self.fps) / len(self.fps)
                self.fps = []

                end_epoch = self.model.cfg.epoch
                if (epoch_id + 1) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
                    save_name = str(epoch_id) if epoch_id != end_epoch - 1 else "model_final"
                    tags = ["latest", f"epoch_{epoch_id}"]
            
            elif mode == 'eval':
                fps = status['sample_num'] / status['cost_time']

                merged_dict = {
                    f"eval/{key}-mAP": map_value[0]
                    for metric in self.model._metrics
                    for key, map_value in metric.get_results().items()
                }
                merged_dict.update({
                    "epoch": status["epoch_id"],
                    "eval/fps": fps
                })

                self.run.log(merged_dict)

                if status.get('save_best_model'):
                    for metric in self.model._metrics:
                        map_res = metric.get_results()
                        key = next((k for k in ['bbox', 'keypoint', 'mask'] if k in map_res), None)
                        
                        if not key:
                            logger.warning("Evaluation results empty, this may be due to "
                                           "training iterations being too few or not "
                                           "loading the correct weights.")
                            return
                        
                        if map_res[key][0] >= self.best_ap:
                            self.best_ap = map_res[key][0]
                            save_name = 'best_model'
                            tags = ["best", f"epoch_{epoch_id}"]

    def on_train_end(self, status):
        self.run.finish()

2. 修改trainer代码

ppdet/engine/trainer.py文件中,在from .callbacks import那一行添加SwanLabCallback:

python
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback, SemiCheckpointer, SemiLogPrinter, SwanLabCallback

接着,我们找到Trainer类的__init_callbacks方法,在if self.mode == 'train':下添加如下代码:

python
if self.cfg.get('use_swanlab', False) or 'swanlab' in self.cfg:
    self._callbacks.append(SwanLabCallback(self))

至此,你已经完成了SwanLab与PaddleYolo的集成!接下来,只需要在训练的配置文件中添加use_swanlab: True,即可开始可视化跟踪训练。

3. 修改配置文件

我们以yolov3_mobilenet_v1_roadsign为例。

configs/yolov3/yolov3_mobilenet_v1_roadsign.yml文件中,在下面添加如下代码:

yaml
use_swanlab: true
swanlab_project: PaddleYOLO # 可选
swanlab_experiment_name: yolov3_mobilenet_v1_roadsign # 可选
swanlab_description: 对PaddleYOLO的一次训练测试 # 可选
# swanlab_workspace: swanhub # 组织名,可选

4. 开始训练

bash
python -u tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval

在训练过程中,即可看到整个训练过程的日志,以及训练结束后自动生成的可视化图表。