Specforge
SpecForge is an ecosystem project developed by the SGLang team. It is a framework for training speculative decoding models, enabling developers to seamlessly integrate them into the SGLang service framework to accelerate inference speed.

- SpecForge Official Documentation: https://docs.sglang.io/SpecForge/basic_usage/training.html
You can use SpecForge for rapid model training while employing SwanLab for experiment tracking and visualization.
Integrating Specforge with SwanLab
Reference Documentation: https://docs.sglang.io/SpecForge/basic_usage/training.html#experiment-tracking
Simply add the --report-to parameter to the command line of the shell script provided by SpecForge and pass swanlab as its value.
bash
torchrun \
--standalone \
--nproc_per_node 8 \
scripts/prepare_hidden_states.py \
--target-model-path meta-llama/Llama-3.1-8B-Instruct \
--enable-aux-hidden-states \
--data-path ./cache/dataset/sharegpt_train.jsonl \
--output-path ./cache/hidden_states/sharegpt_train_Llama-3.1-8B-Instruct \
--chat-template llama3 \
--max-length 4096 \
--tp-size 1 \
--batch-size 32 \
--report-to swanlab