Weights & Biases
Weights & Biases (Wandb) is a platform for experiment tracking, model optimization, and collaboration in machine learning and deep learning projects. W&B provides powerful tools to log and visualize experimental results, helping data scientists and researchers better manage and share their work.
Synchronization Tutorials for Other Tools
You can sync Wandb projects to SwanLab in two ways:
- Live Synchronization: If your current project uses Wandb for experiment tracking, you can use the
swanlab.sync_wandb()
command to log metrics to SwanLab simultaneously while running the training script. - Convert Existing Projects: If you want to replicate a Wandb project on SwanLab, you can use
swanlab convert
to migrate an existing Wandb project to SwanLab.
INFO
The current version only supports converting scalar charts.
1. Live Synchronization
1.1 Add the sync_wandb
Command
Add the swanlab.sync_wandb()
command anywhere in your code before wandb.init()
to synchronize Wandb metrics to SwanLab during training.
import swanlab
swanlab.sync_wandb()
...
wandb.init()
With this implementation, wandb.init()
will simultaneously initialize SwanLab, using the same project
, name
, and config
parameters from wandb.init()
. Therefore, you don’t need to manually initialize SwanLab.
INFO
sync_wandb
supports two parameters:
mode
: SwanLab logging mode, supportingcloud
,local
, anddisabled
.wandb_run
: If set to False, data will not be uploaded to Wandb (equivalent towandb.init(mode="offline")
).
1.2 Alternative Implementation
Another approach is to manually initialize SwanLab first before running Wandb code.
import swanlab
swanlab.init(...)
swanlab.sync_wandb()
...
wandb.init()
In this implementation, the project name, experiment name, and configuration will follow the project
, experiment_name
, and config
parameters from swanlab.init()
. Subsequent wandb.init()
parameters for project
and name
will be ignored, while config
will update swanlab.config
.
1.3 Test Code
import wandb
import random
import swanlab
swanlab.sync_wandb()
# swanlab.init(project="sync_wandb")
wandb.init(
project="test",
config={"a": 1, "b": 2},
name="test",
)
epochs = 10
offset = random.random() / 5
for epoch in range(2, epochs):
acc = 1 - 2 ** -epoch - random.random() / epoch - offset
loss = 2 ** -epoch + random.random() / epoch + offset
wandb.log({"acc": acc, "loss": loss})
2. Convert Existing Projects
2.1 Locate Your project
, entity
, and runid
on wandb.ai
The conversion requires project
, entity
, and optionally runid
.
Locations of project
and entity
:
Location of runid
:
2.2 Method 1: Command-Line Conversion
First, ensure you are logged into Wandb and have access to the target project.
Conversion command:
swanlab convert -t wandb --wb-project [WANDB_PROJECT_NAME] --wb-entity [WANDB_ENTITY]
Supported parameters:
-t
: Conversion type (wandb
ortensorboard
).-p
: SwanLab project name.-w
: SwanLab workspace name.--mode
: (str) Logging mode (default:"cloud"
), options:["cloud", "local", "offline", "disabled"]
.-l
: Log directory path.--wb-project
: Wandb project name to convert.--wb-entity
: Wandb entity (username/team) where the project resides.--wb-runid
: Wandb Run ID (specific experiment under the project).
If --wb-runid
is omitted, all Runs under the project will be converted. If specified, only the selected Run will be converted.
Asynchronous Conversion (Download Data Locally First, Then Upload to SwanLab)
- Download data locally:
swanlab convert --mode 'offline' -t wandb --wb-project [WANDB_PROJECT_NAME] --wb-entity [WANDB_ENTITY]
- Upload to SwanLab:
swanlab sync [LOG_DIRECTORY_PATH]
2.3 Method 2: In-Code Conversion
from swanlab.converter import WandbConverter
wb_converter = WandbConverter()
# wb_runid is optional
wb_converter.run(wb_project="WANDB_PROJECT_NAME", wb_entity="WANDB_USERNAME")
This achieves the same result as command-line conversion.
WandbConverter
parameters:
project
: SwanLab project name.workspace
: SwanLab workspace name.mode
: (str) Logging mode (default:"cloud"
), options:["cloud", "local", "offline", "disabled"]
.logdir
: Log directory path.
WandbConverter.run
parameters:
wb_project
: Wandb project name.wb_entity
: Wandb entity (username/team).wb_runid
: Wandb Run ID (specific experiment).
Asynchronous Conversion (Download Data Locally First, Then Upload to SwanLab)
- Download data locally:
from swanlab.converter import WandbConverter
wb_converter = WandbConverter(mode="offline")
# wb_runid is optional
wb_converter.run(wb_project="WANDB_PROJECT_NAME", wb_entity="WANDB_USERNAME")
- Upload to SwanLab:
swanlab sync [LOG_DIRECTORY_PATH]